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Abstract—In the rapidly evolving landscape of cyber threats
targeting the Internet of Things (IoT) ecosystem, and in light
of the surge in botnet-driven Distributed Denial of Service
(DDoS) and brute force attacks, this study focuses on the early
detection of IoT bots. It specifically addresses the detection
of stealth bot communication that precedes and orchestrates
attacks. This study proposes a comprehensive methodology for
analyzing IoT network traffic, including considerations for both
unidirectional and bidirectional flow, as well as packet formats.
It explores a wide spectrum of network features critical for
representing network traffic and characterizing benign IoT
traffic patterns effectively. Moreover, it delves into the modeling
of traffic using various semi-supervised learning techniques.
Through extensive experimentation with the IoT-23 dataset—a
comprehensive collection featuring diverse botnet types and traf-
fic scenarios—we have demonstrated the feasibility of detecting
botnet traffic corresponding to different operations and types
of bots, specifically focusing on stealth command and control
(C2) communications.The results obtained have demonstrated
the feasibility of identifying C2 communication with a 100%
success rate through packet-based methods and 94% via flow-
based approaches, with a false positive rate of 1.53%.

Index Terms—IoT, Botnet, Security, intrusion detection, Semi
supervised learning, Anomaly detection

I. INTRODUCTION

In the digital era, the proliferation of Internet of Things

(IoT) devices has spurred unprecedented advancements across

various sectors, from enhancing home automation to revo-

lutionizing industrial processes. However, this rapid expan-

sion has also exposed new vulnerabilities, positioning these

interconnected networks as prime targets for sophisticated

cyber threats. Among these, botnet attacks have emerged as a

particularly significant challenge [1]. A botnet, a network of

infected devices controlled by a malicious actor, can silently

compromise numerous devices to orchestrate disruptions like

Distributed Denial of Service (DDoS) attacks, as seen with the

Mirai attack against OVH. The 2023 Nokia Threat Intelligence

Report [1] and FortiGuard Labs’ 2022 [2] review collectively

underline the escalating cyber threat landscape, marked by

a surge in IoT botnet-driven DDoS traffic and brute force

attacks. This includes a significant increase in IoT device

involvement, from 200,000 to 1 million within a year, and

a rise in mobile trojans compromising banking data.

Botnet operations unfold in several stages: scanning, infec-

tion, control, and finally, attack. Mirai [3], a notorious bot

malware, exemplifies the botnet lifecycle, which encompasses

four phases: scanning, infection, control, and attack. During

the scanning phase, Mirai searches for vulnerable IoT devices

with open Telnet ports. Once identified, the infection phase

begins, exploiting weak default credentials to compromise

devices. In the control phase, infected devices, now bots,

connect to a Command and Control (C&C) server, receiving

instructions. Finally, in the attack phase, these bots execute

coordinated attacks, such as DDoS. Much research has focused

on detecting botnet-led attacks, particularly the final phase,

which often involves volumetric DDoS attacks. These attacks

are markedly distinct from legitimate traffic due to their

network flow volume. To effectively prevent such attacks

and ensure early detection, our study delves into identifying

network traffic associated with the stages preceding the attack

phase. Detecting network traffic related to the scanning and

infection stages allows for interrupting the process and pre-

venting device compromise. Moreover, identifying command

and control (C2) communication aids in detecting IoT devices

compromised by botnets. This proactive approach aims to

neutralize the bot malware before it reaches the attack stage,

and mitigating their propagation.

The landscape of IoT botnet detection has been extensively

researched, with numerous studies focusing on the develop-

ment of network-based intrusion detection systems (NIDS)

that utilize artificial intelligence (AI). Despite the impressive

performance of existing research in detecting botnet attacks,

a significant gap remains in their prevention and early-stage

detection. Most current methodologies are centered on rec-

ognizing and mitigating botnet attacks after their occurrence,

overlooking the crucial need for proactive and anticipatory

measures to prevent these threats before they materialize. This

situation underscores a broader issue within the field: a notable

deficiency in the early detection of IoT bots.

Furthermore, reducing the detection delay is critically im-

portant, both in the event of actual attacks and in the stages

leading up to them. Minimizing this delay is vital to limit the

impact of the infection and prevent the spread of bot malware

throughout the network. Nonetheless, only a few existing

studies have concentrated on reducing this response time. Our

study aims to minimize the detection delay by conducting a

thorough investigation of the representation of network traffic



(flows/packets) and the features that characterize it.

Most state-of-the-art solutions predominantly use super-

vised learning methods for detecting botnet attacks. This ap-

proach, however, presupposes the availability of botnet traffic

for training, an assumption not consistently valid in real-world

scenarios, which often exhibit a significant imbalance between

benign and malicious traffic. Furthermore, this dependence

substantially restricts the model’s capability to identify un-

known botnet traffic, thus reducing its effectiveness against

new or evolving threats. Our study intends to explore semi-

supervised learning methods that do not necessitate malicious

traffic for training.

Building on the identified gaps in existing research, several

challenges need to be addressed to enhance botnet early de-

tection and prevention capabilities. Firstly, due to the scarcity

of malicious traffic for training purposes, there is a critical

need for detection approaches that either do not require or

require minimal malicious traffic for model training. Accurate

recognition of normal traffic patterns is essential for detecting

botnet activities. However, differentiating normal traffic from

malicious traffic, which corresponds to the stealthy commu-

nication of bot malware—specifically during the infection

and command and control (C2) phases—can be challenging,

especially if the latter closely mimics benign behavior. Further-

more, it becomes even more challenging to not only detect but

also reduce the detection delay effectively.

To address the challenge of detecting botnet activities with

minimal or no access to malicious traffic, this study explores

the potential of semi-supervised learning techniques, focus-

ing on one-class classification methods, to accurately model

normal network behavior. This innovative approach aims to

uncover a wide spectrum of botnet traffic, including previously

unknown bots, by identifying deviations from established

network traffic patterns. Our research assesses the feasibility of

5 semi-supervised techniques in modeling benign network pat-

terns and detecting a wide range of bot types. To detect stealth

communications, such as infections and C2 traffic, this study

examines several representations of network traffic, including

bidirectional flows, unidirectional flows, and packets, along

with the network features that characterize them. We explore

and utilize features based on packet headers, without analyzing

the payload of network packets. This method facilitates the

detection of bot malware that uses encryption to hide its traffic,

a feature increasingly critical in an era where encryption is

commonly employed to bypass detection. By conducting a

comprehensive evaluation of traffic representation, modeling

methodologies, and sampling strategies, our study achieves

a significant reduction in detection delays, aiming for less

than one second. Our experimental validation with the IoT-

23 dataset, featuring authentic traffic from IoT devices and

a diverse array of verified IoT bot malware, underscores the

efficacy of our methodology. We achieve a a high detection

rate exceeding for scan traffic and C2 communications from

various bot malwares, with a detection delay of 1 second in

flow-based and less than one second in packet-based detection.

The remainder of this paper is organized as follows. Sec-

tion II describes related work. The proposed methodology is

presented in Section III-B. Section IV depicts the performance

evaluation results, and finally, Section V concludes the paper.

II. RELATED WORK

The increasing sophistication of IoT botnets necessitates ad-

vanced detection methodologies that not only identify threats

but do so promptly to mitigate potential damage. Recent

research in this domain has paved the way for various inno-

vative detection strategies, each contributing uniquely to the

field’s advancement. This section reviews these contributions,

particularly emphasizing the evolution towards early-stage and

rapid detection mechanisms.

Wei et al. [4] developed a deep learning framework tar-

geting early-stage IoT botnet detection, notable for its use

of a 5-second detection window. This approach leverages

packet payload-independent features, marking a significant

step towards accurate and timely identification of network

anomalies associated with botnet activities. Nguyen et al.

[5] explored the potential of collaborative machine learning

models in the early detection of IoT botnets, assessing various

algorithms such as Support Vector Machine and K-Nearest

Neighbors. Their work contributes valuable insights into the

effectiveness of machine learning techniques in identifying

botnet threats at an incipient stage. In a related effort, Nguyen

et al. [6] enhanced detection methodologies through a hybrid

model that integrates PSI-rooted subgraph features, focusing

on combining static and dynamic analysis to improve detection

precision. While their model advances the detection capa-

bilities, it primarily emphasizes the identification rather than

the swift response to IoT botnet threats. Bojarajulu et al. [7]

proposed a novel optimization strategy, SMIE (Slime Mould

with Immunity Evolution), to optimize a hybrid classifier

comprising Bidirectional Gated Recurrent Units (Bi-GRU) and

Recurrent Neural Networks (RNN). This approach signifies an

important development in enhancing the accuracy of botnet

detection mechanisms.

Despite these advancements, a gap remains in the field

for an approach that integrates the benefits of early detection

with the requisite speed to respond to threats effectively. The

present study aims to fill this gap by proposing a detection

methodology that not only identifies IoT botnets at an early

stage but does so with a significantly reduced detection time.

Our approach is designed to offer a rapid response capability,

crucial for limiting the impact of botnet attacks on IoT

systems, thereby advancing beyond the current state-of-the-art

in both detection timeliness and efficiency.

III. PROPOSED METHODOLOGY

This section outlines the methodology for network traffic

analysis, considering both unidirectional and bidirectional

flows, as well as packet formats. It explores the features critical

for representing traffic and discusses the selection process for

identifying those that best characterize the traffic patterns.

Finally, it delves into the modeling of traffic using different
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Fig. 1: Network Traffic Modeling Workflow

semi-supervised learning techniques. Figure 1 illustrates the

workflow of our network traffic analysis methodology.

A. Network traffic representation

1) Flow and features extraction: We consider both packet-

based and flow-based network traffic formats for botnet de-

tection. To identify traffic flows, we utilize 5-tuple informa-

tion, which includes the source port number, destination port

number, and protocol, but exclude source and destination IP

addresses to protect user privacy. For each extracted flow, we

calculate a set of features within a specified time window,

applying the same feature set for packet-based analysis as

well. Detailed descriptions of the features calculated for bidi-

rectional flows are available in [8], while in-depth explana-

tions for unidirectional flows and packet-based analysis can

be found in [9]. To further ensure user privacy and avoid

biased outcomes, we also exclude payload details, source and

destination ports, and timestamps. The network features fall

into the following four main categories:

• Packet-Based: This category focuses on metrics related

to individual packets, such as their counts and transmis-

sion rates. It is crucial for evaluating the volume and flow

patterns within the network, providing insights into traffic

density and potential congestion points.

• Byte-Based: These features examine the volume of data

transmitted, encompassing total bytes and sizes of pack-

ets. They are key to assessing the network’s load and

utilization, helping to identify significant data transfers

and understand bandwidth consumption.

• Time-Based: Time-based metrics capture the temporal

characteristics of network traffic, including flow durations

and the intervals between packet transmissions. They

offer valuable perspectives on the timing of network

activities, highlighting patterns of usage and detecting

irregular or anomalous behaviors.

• Protocol-Based: Derived from specific protocol infor-

mation, such as TCP/UDP protocols and various header

details, this category is instrumental in distinguishing

types of network traffic.

2) Features selection: Our objective is to refine the features

set, retaining only those features that are truly pertinent.

Considering that this study adopts a realistic configuration,

where we predominantly have access to normal traffic and

very little to no malicious traffic, we require a feature selection

technique that is capable of selecting attributes with a single

class (normal). In this study, we implement the filter feature

selection methodology outlined by Lorena et al. [10], which

aligns exceptionally well with our specific requirements. To

select features, five essential criteria for individually evaluating

and prioritizing features are employed, detailed as follows:

• Spectral Score (SPEC): It involves constructing a sim-

ilarity matrix S for all data pairings, using the Radial

Basis Function (RBF) to compute similarities between

two instances xi and xj , as formulated as:

Sij = e−
∥xi−xj∥

2

2σ2 (1)

• Information Score: this score aims to maximize infor-

mation gain for the target class. The randomness within

the data is gauged using entropy calculations based on

the RBF similarity matrix S, as depicted in Equation 2:

E = −

n
∑

i=1

n
∑

j=1

Sij log2 Sij+(1−Sij) log2(1−Sij) (2)

• Pearson Correlation: It calculates the Pearson corre-

lation between each feature and the others, summing

the absolute values of these correlations, as shown in

Equation 3:

corr(fi) =

m
∑

j=2

|pearson(fi, fj)| (3)

• Intra-class Distance: This metric quantifies the average

distance of all instances within a class from the class

centroid (x̄), as illustrated in Equation 4:

IE =
1

n

n
∑

i=1

d(xi, x̄) (4)

• Interquartile Range: This is calculated from the feature

distribution within the target class, focusing on the in-

terquartiles. The Interquartile Range (IQR) is calculated

as follows:

IQR = Q3−Q1 (5)
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where Q1 and Q3 respectively represent the first and third

quartiles of the data set.

To synthesize their outcomes of these metrics , three ranking

aggregation methods are proposed: mean, majority, and Borda,

with the mean method—averaging the feature positions across

ranking lists—being selected for our study.

B. Botnet Network traffic detection

Our methodology is designed to accurately model the base-

line network traffic of connected devices, identifying any de-

viations from established patterns as potential security threats.

To accurately model the normal network traffic pattern of IoT

devices, we rigorously assess the feasibility and effectiveness

of our approach by scrutinizing the following five prominent

semi-supervised learning techniques. The selected algorithms

exemplify varied semi-supervised detection methods: Elliptic

Envelope defines geometric boundaries to identify outliers,

Isolation Forest employs ensembles for complex pattern detec-

tion, Local Outlier Factor uses clustering for nuanced analysis,

and Autoencoder leverages neural networks for subtle behavior

detection. Brief descriptions of their functions follow.

• Isolation Forest (IF) [11]: Utilizes Isolation Trees to de-

tect anomalies, with the anomaly score s(x, n) reflecting

the ease of isolating a point. The score is calculated as:

s(x, n) = 2−
E(h(x))

c(n) (6)

where E(h(x)) is the average path length to isolate the

point in iTrees, and c(n) is a normalization factor based

on the dataset size n.

• Elliptic Envelope (EE) [12]: Encloses data points within

an ellipse, assuming Gaussian distribution. Outliers are

identified using the Mahalanobis distance DM (x):

DM (x) =
√

(x− µ)TS−1(x− µ) (7)

Points with DM (x) exceeding a threshold are flagged as

outliers.

• Local Outlier Factor (LOF) [13]: Identifies outliers by

comparing local density. The LOF score for a point x is

given by:

LOFk(x) =

∑

y∈Nk(x)
lrdk(y)
lrdk(x)

|Nk(x)|
(8)

This score indicates the extent to which a point is an

outlier based on its neighborhood density.

• One-Class SVM (OSVM) [14]: Separates data points

from the origin in a high-dimensional space. The opti-

mization problem is:

minimize
w, ξi, ρ

1

2
∥w∥2 +

1

νn

n
∑

i=1

ξi − ρ (9)

The decision function f(x) classifies points as normal or

anomalous:

f(x) = sgn((w · φ(x))− ρ) (10)

• Deep Autoencoders (AE): Detects anomalies through the

reconstruction error E(x):

E(x) = ||x− x̂||2 (11)

A high reconstruction error indicates an anomaly, due to

significant deviation from the normal data pattern.

TABLE I: Sample Distribution Across the Different datasets

Dataset Normal DDoS Scan Attack C&C Download

Unidirectional 100966 95337 31818 27754 8412 13
Bidirectional 10304 11500 18370 690 3650 11
Packet 10000 4500 2000 2200 3368 1554

IV. PERFORMANCE EVALUATION

A. Datasets generation

Our study leveraged the Aposemat IoT-23 dataset [15],

sourced from the Stratosphere Laboratory at CTU University,

Czech Republic. This dataset contains twenty-three scenarios

of IoT network traffic, including real malware infections and

benign traffic. Due to the IoT-23 dataset’s vast size, we

couldn’t analyze it in full. Instead, we chose representative

samples from each scenario to capture the diversity of bot mal-

ware and activities. We developed scripts leveraging two dis-

tinct traffic exporters to process network flows: CICFlowMeter

[8] for extracting bidirectional flows and Tranalyzer [9] for

unidirectional flow extraction. For comprehensive details on

the features computed for bidirectional flows, the reader is

directed to [8]. Similarly, in-depth analyses concerning unidi-

rectional flows and packet-based assessments are thoroughly

documented in [9]. From the initial dataset consisting of PCAP

captures, we meticulously curated three distinct datasets: one

containing bidirectional flows, a second comprising unidi-

rectional flows, and a third dedicated to packet-level data.

The distribution of samples by dataset and type, following

data preprocessing operations such as cleaning, converting

categorical attributes to numerical format, and normalization,

is depicted in Table I.

B. Experimental results

We employed the Scikit-learn package for the implemen-

tation of the anomaly detection models. These models were

trained and tested within the Google Colab cloud environment.

We utilized a random search, a lightweight and effective

method, to identify the optimal combination of hyperparam-

eters. Additionally, we conducted a 5-fold cross-validation to

ensure the robustness of our models. The model evaluation

was based on the performance metrics detailed below:

• Precision: TP
TP+FP

• Accuracy: TP+TN
TP+FN+FP+TN

• Recall: TP
TP+FN

• FPR (False Positive Rate): FP
FP+TN

• F1-Score: F1 Score = 2×TP
2×TP+FP+FN

• AUC (Area Under the ROC Curve): Measures the entire

two-dimensional area underneath the entire ROC curve

from (0,0) to (1,1)
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TABLE II: Predictive performance of different classifiers considering different traffic formats

Classifier Traffic Precision(%) Accuracy(%) Recall(%) FPR(%) F1-Score(%) AUC(%)

One-Class SVM (OSVM)
Bi. Flow 99.98 99.97 99.99 15.53 99.98 92.23

Uni. Flow 99.79 97.08 97.18 5.75 98.47 95.71

Packet 99.92 99.92 100.00 1.53 99.96 99.23

Local Outlier Factor (Lof)
Bi. Flow 99.97 95.85 95.87 20.58 97.79 87.65

Uni. Flow 94.00 83.87 94.00 6.00 86.40 78.93

Packet 98.74 98.78 100.00 24.83 99.36 87.58

Isolation Forest (IF)
Bi. Flow 99.92 76.56 76.57 34.76 82.03 70.91

Uni. Flow 95.13 81.20 95.13 4.87 85.33 77.47

Packet 98.83 87.03 87.39 19.96 92.26 83.71

Elliptic Envelope (EE)
Bi. Flow 99.97 99.82 99.85 20.97 99.91 89.44

Uni. Flow 88.00 63.00 88.00 12.00 72.20 59.87

Packet 98.94 98.98 100.00 20.78 99.47 89.61

Autoencoder (AE)
Bi. Flow 98.45 42.11 36.88 5.79 53.66 65.55

Uni. Flow 99.74 97.05 97.23 10.10 98.47 93.56

Packet 97.87 97.13 98.51 8.07 98.19 95.22

TP, TN, FP, and FN denote true positive, true negative, false

positive, and false negative, respectively.

1) Detection performances: Upon analyzing the perfor-

mance metrics presented in Table II, OSVM stands out as

the best-performing classifier across a variety of traffic types,

including bidirectional, unidirectional flows, and packet-based

formats. Notably, its performance in packet-based traffic is

exceptional, demonstrating a perfect detection rate (recall)

alongside a remarkably low false alarm rate (FPR). This effi-

cacy is further evidenced by a high AUC score, underscoring

OSVM’s capability to accurately differentiate between normal

and bot traffic with minimal error. Therefore, the optimal

configuration for detecting botnet traffic involves utilizing

OSVM with network traffic represented in packet format. For

unidirectional flow and packet traffic, the autoencoder is the

second-best choice, with its high recall and precision. AE is

especially useful in cases where One-Class SVM (OSVM)

cannot be used, like in federated learning.

2) Detection Delay: Considering packet-level monitoring,

the detection delay is measured in milliseconds, enabling near

real-time detection for immediate identification and mitigation

of botnet traffic. For unidirectional flow, which demonstrates

the second-best performance, we tested various sampling time

windows to determine the minimal detection delay that does

not compromise the system’s performance. Experimenting

with different Time Window (TW) durations aimed to find

an optimal balance for quick and accurate detection. Contrary

to our initial assumption that larger TWs would enhance

detection capabilities, as indicated in Table III, a 1-second TW

size surprisingly yielded the highest precision, accuracy, and

F1-score while maintaining the lowest false positive rate. How-

ever, it is important to note that detection delay is influenced by

various factors, including the traffic volume, system resources,

feature extraction time, and implementation efficiency. In the

best-case scenario, the detection delay could be at the lower

end of its range, leaning towards milliseconds for packet-based

detection, and around 1 second for unidirectional flow-based

detection.

3) Features selection: In the development of our anomaly

detection framework, the selection of an appropriate feature set

is critical to effectively model the normal network pattern. Our

analysis has led us to a feature set predominantly composed

of Time-Based and Protocol-Based attributes, which together

represent an impressive 75.38% of the total features used—

specifically, 36.92% for Time-Based features and 38.46% for

Protocol-Based features. This composition was chosen based

on the premise that the nuances of temporal communication

patterns and protocol-specific data are instrumental in estab-

lishing a baseline of ‘normal’ traffic. Feature selection, as

depicted in Table IV, achieved a reduction of 35 %, bringing

the number of features down from 79 to 51. Considering the

AUC, there was a very slight decrease; overall, the perfor-

mance remained the same, even with a reduction of more than

one-third of the features. Through this process, the model was

efficiently streamlined, preserving its efficacy with a notably

reduced set of features.

4) Discussion: Given that packet-based detection achieves

a 100% detection rate for all traffic types, we now examine the

performance of detection in the case of unidirectional flow-

based detection. Based on the confusion matrices presented

in Figure 2, we observe perfect detection of scan flows and

download inductions. It is particularly noteworthy how we

have managed to anticipate the detection of C2 traffic, which

poses a greater challenge compared to previous traffic types,

achieving an impressive success rate of 94%. As for Heartbeat

traffic, the detection rate is at 76%, making it the most difficult

type of traffic to detect. In the Mirai botnet, HeartBeat is often

associated with a type of communication used to maintain

connection and check the presence of a bot within the botnet.

The heartbeat typically involves periodic, simple messages

sent between the bot and the C2 server. For Mirai, these

heartbeat messages can be very basic, just a few bytes, to

confirm the bot is still active and connected.

V. CONCLUSION

This study has conclusively demonstrated the feasibility

of effectively modeling normal network traffic for IoT de-

vices. By leveraging packet-based and unidirectional flow

formats, alongside Time-Based and Protocol-Based features,

we have optimized the representation of network traffic. The
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TABLE III: Evaluation of the predictive performances by varying the time-window size

TW (s) Precision (%) Accuracy (%) Recall (%) FPR (%) F1-Score (%) AUC (%)

Default 99.79 97.08 97.18 5.75 98.47 95.71
300 99.56 96.83 97.06 6.84 98.29 95.11
100 99.36 99.36 99.93 5.61 99.65 97.16
10 98.04 98.72 99.96 3.37 98.99 98.29
1 99.41 99.27 99.65 2.07 99.53 98.79

TABLE IV: Features selection evaluation

Features set Nb. Features Precision (%) Accuracy (%) Recall (%) FPR (%) F1-Score (%) AUC (%)

All Features 79 99.41 99.27 99.65 2.07 99.53 98.79
Selected Features 51 99.56 98.53 98.55 1.53 99.05 98.51
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Fig. 2: Unidirectional Flow-Based Detection Across Various Types of Botnet Traffic

use of semi-supervised learning approaches, especially the

One-Class SVM and Autoencoder methods, has been validated

for modeling normal IoT traffic patterns. Our results confirm

the efficacy of semi-supervised ML techniques in accurately

detecting botnet activities, including stealth netowork traffic

like scanning and command-and-control (C2) communica-

tions. Significantly, the study has not only proven the ability to

detect bots at early stages but also achieved a detection delay

of less than 1 second in packet-based traffic, with a perfect

detection rate and a FPR under 2%, and a 1-second detection

delay in unidirectional flow traffic, attaining a 98% detection

rate with around 2% FPR. Additionally, we have concluded

from this study that, although flow-based detection, widely

used by the community, yields good results, it demonstrates

inferior performance compared to the packet-based approach

when it comes to detecting C2 traffic.
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